Acta Crystallographica Section E Structure Reports Online

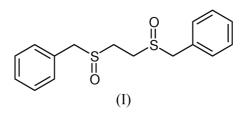
ISSN 1600-5368

Jian-Rong Li, Ruo-Hua Zhang and Xian-He Bu*

Department of Chemistry, Nankai University, Tianjin 300071, People's Republic of China

Correspondence e-mail: buxh@nankai.edu.cn

Key indicators


Single-crystal X-ray study T = 293 KMean $\sigma(C-C) = 0.005 \text{ Å}$ R factor = 0.040 wR factor = 0.130 Data-to-parameter ratio = 14.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. The molecular structure of the title compound, $C_{16}H_{18}O_2S_2$, adopts the *R,S* form, and has a center of symmetry at the midpoint of the central C–C bond. All the C and S atoms between two phenyl rings are coplanar; this plane is perpendicular to the planes of the phenyl rings. The two S=O groups lie on opposite sides of that plane and their pseudo-torsion angle (S=O···S=O) is 180°, as required by symmetry.

(R,S)-1,2-Bis(benzylsulfinyl)ethane

Comment

Disulfoxides are known to act as multifunctional ligands, which coordinate to metal ions *via* either their O or S atoms, according to electronic and steric factors. The inherent chiral properties of the S atom produce the diastereomeric *meso* and *rac* forms. Compounds of the type $RS(O)(CH_2)_nS(O)R$ exist as diastereoisomeric *rac* and *meso* forms which have different melting points. X-ray crystal structure analyses of the disulfoxides (R = methyl, *n*-propyl and phenyl) proved that the higher melting isomer is the *meso* form and the lower is the *rac* form (Svinning *et al.*, 1976; Shao *et al.*, 1989; Cattalini *et al.*, 1979). As part of our systematic investigation of the coordination chemistry of disulfoxides, we recently synthesized a *meso* form of 1,2-(benzylsulfinyl)ethane, (I). Here, we report the synthesis and crystal structure of (I).

The structure of (I) (Fig. 1) has the R,S configuration. The molecule has a center of symmetry at the midpoint of the central C–C bond. A similar situation was found in (R,S)-1,2bis(methylsulfiny)ethane (Svinning et al., 1976) and (R,S)-1,2bis(phenylsulfiny)ethane (Cattalini et al., 1979). All the C and S atoms between the two phenyl rings are coplanar; this plane is perpendicular to the planes of the phenyl rings, which are parallel to each other. The two S=O groups lie on opposite sides of that plane and their pseudo-torsion angle $(S=O \cdots S=O)$ is 180° , as required by symmetry. The torsion angle O1-S1-C2-C3 is 81.0 (2)°. The S1-O1 bond length [1.495 (2) Å] is almost equal to that of the corresponding S-O bond [1.487 (2) Å] of the analogous compound (R,S)-1,2bis(phenylsulfiny)ethane (Cattalini et al., 1797), but the S1- $C1sp^3$ bond length [1.799 (3) Å] is shorter than that of the S- Csp^3 bond [1.814 (4) Å] found in (R,S)-1,2-bis(phenylsulfiny)ethane.

Received 22 April 2002 Accepted 12 July 2002 Online 25 July 2002

© 2002 International Union of Crystallography

Printed in Great Britain - all rights reserved

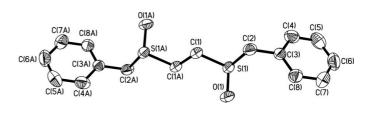
Experimental

1,2-Bis(benzylthioether)ethane was prepared according to a procedure similar to that reported by (Hartley *et al.* (1979). The oxidation of the bithioether to the corresponding disulfoxide was carried out according to the method of Zhang *et al.* (1995). Concentrated nitric acid (2.5 ml) was added dropwise to 5 g (0.016 mol) of 1,2-bis-(benzylthioether)ethane and stirred vigorously at room temperature for 24 h. The organic phase was separated from the resulting mixed solution and was washed with 10% sodium carbonate solution and water to separate out the solid product. Then the crude product was recrystallized from acetone. Yield: 45%, m.p: 493–495 K; IR (KBr pellets, cm⁻¹): 2963 (*m*), 1494 (*m*), 1455 (*m*), 1073 (*w*), 1019 (*s*), 1002 (*m*), 770 (*m*), 699 (*s*), 480 (*m*); ¹H NMR (CDCl₃): δ 2.83–3.04 (4H, *m*), 4.03 (4H, *t*), 7.26–7.40 (10H, *m*); analysis calculated for C₁₆H₁₈O₂S₂: C 62.66, H 5.92%; found: C 62.42, H 6.07%. Colorless single crystals were obtained by recrystallization from chloroform.

Crystal data

 $\begin{array}{l} C_{16}H_{18}O_2S_2\\ M_r = 306.42\\ Monoclinic, P2_1/c\\ a = 16.933 \ (6) \ {\rm \mathring{A}}\\ b = 5.312 \ (2) \ {\rm \mathring{A}}\\ c = 8.423 \ (3) \ {\rm \mathring{A}}\\ \beta = 91.209 \ (7)^\circ\\ V = 757.5 \ (5) \ {\rm \mathring{A}}^3\\ Z = 2 \end{array}$

Data collection


Bruker CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 1998) $T_{min} = 0.933$, $T_{max} = 0.933$ 2943 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.130$ S = 1.111333 reflections 91 parameters H-atom parameters constrained $D_x = 1.343 \text{ Mg m}^{-3}$ Mo K α radiation Cell parameters from 2123 reflections $\theta = 1.2-25.0^{\circ}$ $\mu = 0.35 \text{ mm}^{-1}$ T = 293 (2) KBlock, colorless $0.20 \times 0.20 \times 0.20 \text{ mm}$

1333 independent reflections 994 reflections with $I > 2\sigma(I)$ $R_{int} = 0.030$ $\theta_{max} = 25.0^{\circ}$ $h = -20 \rightarrow 17$ $k = -6 \rightarrow 5$ $l = -10 \rightarrow 9$

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.07P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} = 0.007$ $\Delta\rho_{max} = 0.25 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.34 \text{ e} \text{ Å}^{-3}$ Extinction correction: *SHELXL97*Extinction coefficient: 0.25 (3)

Figure 1

View of the title compound, showing ellipsoids at the 50% probability level.

Table 1

Selected geometric parameters (Å, °).

S1-O1 S1-C1	1.495 (2) 1.799 (3)	S1-C2	1.813 (3)
O1-S1-C1 O1-S1-C2	105.82 (14) 107.59 (15)	C1-S1-C2	97.63 (14)

H atoms were placed geometrically (C-H = 0.93 and 0.97 Å) and included in the structure-factor calculations.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SMART*; data reduction: *SHELXTL* (Bruker, 1998); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (No. 29971019) and the Tianjin Natural Science Foundation.

References

Bruker (1998). SMART (Version 5.051) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Cattalini, L., Michelon, G., Marangoni, G. & Pelizzi, G. (1979). J. Chem. Soc. Dalton Trans. pp 96–101.

Hartley, F. R., Murray, S. G., Levason, W., Soutter, H. E. & McAuliffe, C. A. (1979). *Inorg. Chim. Acta*, 35, 265–277.

Shao, P. X., Zhu, F. C., Yao, X. K., Wang, H. G. & Wang, R. J. (1989). Chem. J. Chin. Univ. 9, 821–825.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Svinning, T., Mo, F. & Bruun, T. (1976). Acta Cryst. B32, 759-764.

Zhang, R. H., Zhan, Y. L., Chen, J. T. (1995). Synth. React. Inorg. Met.-Org. Chem. 25, 283–292.